
FOR AERONAUTICS

TECHNICAL NOTE 3069

INCOMPRESSIBLE FLOW PAST A SINUSOIDAL

WALL OF FINITE AMPLITUDE

By Carl Kaplan

Langley Aeronautical Laboratory
Langley Field, Va.

Washington

February 1954

AFIMM

. .. . . . ...fi .—. .— - .-—. -...—. . . ... ..----- . .... .. . .. .. . . . . . ..—. .— -.. .—- .-. ..-.
1



w
NATIONKL ADVISORY colmITrEE

TECHLIBRARYKAFB,NM

Ioflollul!llllllun
FCIRAERONAUTICS ClllbL21/3

TECHNICALIVOTE3069

INCOMPRESSIBLEFLOW PAST A SINUSOIDAL

WALL OF

By

FINITE AMPLITUDE

Carl K&plan

The problem of the present paper has been chosen for the purpose
of exhibiting some of the possible-mathematical troubles that msy occur
in the iterative procedures so much in use in present-dsy aerodynamics.
First, it is shown that the exsmple of incompressible flow past a sinw-
oidal wall of finite amplitude should properly be treated in the plane
of the velocity potential and the stresm function rather than in the
physical flow plane. Then, two contrasting iterative procedures are
utilized for the solution of this particulsx problem. One is the wel2-
lmown small-disturbancemethod in which the physical-plane coordinates
are determined in the form of Fourier series whose coefficients are
analytically developed as series in ascending powers of the amplitude.
ti general, this method precludes any discussion of convergence, the
tacit assumption being that no mathematical limitation intervenes before
the solution ceases to be valid because of some physical reason. The
other procedure is to state the problem in the form of an integral equa-
tion whose solution can be found by a process of successive approxima-
tions. The convergence of this method can usually be judged when the
difference between my two successive approximations is deemed negl3-
gible. An included numerical example serves to emphasize the superior-
ity of the integral-equation approach over the small-disturbante-method.

INTRODUCTION

In the nonMnear treatment of stationary compressible flows, the.
methods utilized very often involve developments in series and succes-
sive appro~tions. One of the most widely used of these methods is
the Prandtl-Busemnn small-disturbanceprocedure for the calculation of
two-dimensional compressible flow past a thin profile. According to this
method, the veloci@ potential or the stream function is developed in
powers of the thickness coefficient with the thin profile placed at a
vanishingly small angle of attack in a uniform stresm of Mch number less
thm unity. Thus fsrj no strictly mathematical investigation has been
made on the convergence of this small-disturbanceprocedure. Indeed,
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2 NACA ~ 3069

the labor increases so rapidly with the order of the approximation that 0
usually only two or three steps can be calculated; thus, any possible
rigorous statement on the question of convergence is eliminated. The
first step in this method of iteration being the undisturbed stream
itself, the decisive elemat in the convergence of the process is the
tacit assumption that no purely mathematical Mnitation sets in before
the breakdown of the flow due to some physical reason (for exsmple, the
attainment of sonic velocity at some point in the field of flow). That
such mathematical difficulties can appear, even without the complication
of compressibility, is illustrated in the problem treated in the present
paper, namely, incompressible flow past.a sinusoidal wall of finite
amplitude. This solid boundq has been chosen chiefly because the basic
assumptions of the small-disturbancemethod are adhered to, there being
no stagnation points or points of infinite velocity in the field of flow,
and because numerous iteration steps can be achieved without undue labor.
Moreover, it was found possible to solve the problem independentlyby
means of an integral-equation approach nmch in the mauner of the arbitrary-
airfoil theory of Theodorsen and Garrick (ref. 1). A comparison of these
two modes of solution clearly reveals basic weaknesses in the small-
disturbance method when it is utilized for the purpose of approximating
_ic@ the exact solution of a flow problem.

.

It msy be mentioned that the sinusoidal wall in two dimensions and ,,
its axisymnetric counterpart, the corrugated cylinder, have in the past
been of considerable aid in the solution of various problems in aero-
dyusmics (refs. 2to 7). It is believed that the material of the present
paper msy be found useful in the treatment of such diverse problems as
panel flutter and the hydrodynamic theory of water waves of finite
amplitude.

ANAIXSJS

General Formlas

When the Prandtl—Busemann small-disturbancemethod is utillzed to
obtain the two-dimensional incompressible flow past the wavy wall

Y = E Cos x

the complex potential of the flow w can be represented in the following
f=hion:

m

w=@+ i*=z-*iBo(4-i
5

~(e)eim
n=

(1) ●

—
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where

.

X,y nondimensional rectangular Cartesian coordinates, radians

z =X+iy

E amplitude of wavy wall, radians

@ nondimensional velocity potential

$ nondimensional stream function

Bn(~) real quantities presumed to be expansible in ascending powers
of E

and where U, the undisturbed stream velocity, and X, the wave length
in radians, are utiMzed as units of velocity and length, respectively.

According to equation (l), it is tacitly assumed that w is an
analytic function of z along and above the eol.idwavy wall. However,
the convergenceof the series appearing on the right-hand side is con-
fined to the broadest strip which is parallel to the x-axis and is
devoid of singular points of w (ref. 8). l?hus,in order for this
series to represent w on and above the sinusoidal boundary, w must
be free of singularities in a strip containing the boundary. There is
no assurace, however, that such singularities do not appear in the
portion of the strip below the wavy wall as soon as the solid boa
departs from a straight 13ne. Therefore, the solution in the form of
equation (1) is not always valid and may even be divergent for 6>0.

The rather surprising statement that the small-disturbance itera-
tion method cannot always be applied in the physical plane to the pro-
blem of flow past a sinusoidal boundary poses the question of what is
the correct mathematical approach to this well-defined flow problem.
The answer is simply that the problem shouldbe treated in the @$-plane,
where the sinusoidal boundary y = e cos x is replaced by the straight
13ne * =0. Equation (1) is then replacedby

m

z ; iA(j(G) + i=w+— 7 &(c)eim
n=

(2)

where the right-hand side represents a complex function of w which is
now analytic in the entire upper half-plane. The coefficients ~(c)
are real quantities presumed to be expansible in ascending powers of 6.
No boundary condition needbe stated in the @ ~rectio~ because the

_ ——.——— .——
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solution is periodic in @; whereas for v = m, the coM@ex veloci~ is, ?

as it wt be, ~ = 1. Expressed in real form, equation (2) is equiva-

lent to the pair of equations ,,

x= @ - ~ An(e)e-n*sin n@
n=l

and

Y .* +*%(E)+ xiAn(E)e-nVcos n~
n=

At the solid boundq, w = O; therefore,

(3a)

(m)

.

(4a)

From

?j Ao(.) + ~ An(.)cos n@Ecosx=— (kb)
n=l

equation (4b) (since e cos x is an even periodic function of @),

J
3-C

AQ(E) + cos x cos nfld@
o

(n=0,1,2, . ..~)

Thserting the expression for x given by equation (4a) into this equa-
tion yields the folLowing fornmla:

(5)
— A “

.
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Tf the quantities &(e) are aasumed to be expansible in a series of
ascending powers of ~, equation (5) represents the recursion formla
for the determination of the coefficients of these series. Preliminary
calculations show that the ~(e) can be expressed as

(6a)

Z&(E) = ~cn+~ (n=l,2, . ..~) (6b)
m-

where the ~ are numerical coefficients uniquely determined by

repeated use of equation (5). Thus, the initial.step in the determina-
tion of the ~ is to obtain ale, the coefficient of the first term

of the series for Al(e). From equation (5), insofar as the first
power of s is concerned,

J& do

or

alo = 1

The second step is to obtain the first term
ment of A2(~). Thus,

in the power-series develop-

. —. —— .——____— ——
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‘lhisexpression for A2(e) is easily evaluated with the aid of the

well-lmown Jacobi expansions in series of Bessel functions; namely,

w

cos(e sin @) = Jo(E) + 2~J2&)cos
n=l

n=o

and the power-series expression for

Jn(~) = ~ (-l)k
k==

Bessel functions

#k+n

2z+nk!(k+ n)!

Illsofm as the second power of e is concerned, the

A2(E) = - * E2

or

f%o =-*

similarly,

or

and

2nfi

1)9

of the first ld.nd

result Is

.

v

—
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b this manner, the power-series developments for

atically constmcted. Table I lists values of the

&(G) can be

coefficients

7

System-

sufficient in number to determine the solution, equations (3), to the
9order c .

Emmination of table I shows that the general formula for the set
of coefficients MO can be written as

%0 = -(-l)n ‘n-l
2n-1 n:

and that

14meover, from equations (4), it can be seen that

(n=l,2, . ..~) (7)

L n=l

Thus, with the aid of equation (8), it folJows

“*& = - z &l(.)
n=l

From considerations of symmetry, the sxea
for one wave length is zero; that is,

/ r
a

yax=o
Jo

(8)

that

(9)

under the boundsry curve

..—___._——— —— ——— —
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Then, by means of equations (4),

&

J[

~~(e) + 2 1[ 1n=l%(~)cosdl-~~(e)cosm@d@=O
o

or

Comparison with equation (9) shows that

(lo)

Mnesrized Case

lh the linearized case in which terms involving only the first
power of e sre retained, equations (3) becom=

x=$- ce-$sin$ (ha)

and.

Y= Q+ Ee-*cos @ (llb)

It is interesting to note that eqpation (ha) is shilar to one that
Bessel discussed in connection with Kepler’s eccentric-anomalyproblem
(ref. 9). Corresponding to Bessel’s solution,

The process by which
the conditions under

= X+2-5: Jn(n~e-*)sin nx (X2)
n=l

this result is obtained gives no information as to
which the expansion on the right-hand side is
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possible. Therefore, until
mined, it is not legitimate

9

the interval of convergence has been deter-
to discsrd terms involving powers of e

higher than the first. However, the series in ecpation (12) is a

Kapteyn series which converges rapidly when ee-$ < 1 and is convergent

even for ~e-v = 1. Thus, for the linearized case where e <<1, only
. terms involving the first power of e need be retsined. ‘lThereversion

of equations (n) then yields

@ = x + Ee-ysin x 1
(u)

which are in agreement with the results obtained when the Hnearized
case is treated in the plane of flow. This result is not in contradic-
tion with the statements made with regard to equation (1), bec~e for
the case of vanishingly smald. e, the boundsry condition of zero normal
velocity is satisfied along the real sxis y = O.

Numerical llmmple of a Wavy Wall of Finite

h choosing a numerical example, it is kept in

AmpLLtude

mind that e should
be less than one but yet should correspond to a wavy wall of moderate
ampMtude. Thus, the value ~ = 0.70 corresponds to a wavy wall whose
amplitude is about one-ninth of the wave length. The conversion of
results obtained in the h-plane to results in the physical flow plane
is easily made bymeaus of equations (3). Ihdeed, these eqpations sze
particularly weld-suited for the construction of streamlines, which is
usually a long and tedious computation. Equation (3a) shows that @
is a continuously increasing function of x, such that the effect of
increasing x by 2K is to increase @ by %. Wreover,

~ %(.)e-n*sin n@ is an odd periodic function of x
=

calculations need be made only for the interval. O S x

The following formulas sre to be utilized for the
fluid speed and pressure coefficient at the surface of
From equation (2),

and, hence,

calcul&ion of
the wavy wall..

dw=uc iv= 1

dz

1- 2 +(6 )e-n~cos n@ - i z *(~)e-n$sin n@
n=l n=l

.. ——-- _.__— . _ .— ——. —.— ..—
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where u = y and v = ~ sxe the conmonents of the fluid velocity

in

is

Ih

dx *
the direction of the x- and y-axes, respectively.

The magnitude of the fluid velocity at the solid boundary ~ = O
given by

n 1
6=

~

[2-1-

12 [

~(e)cos n@ + X @n(e) sin n@
n=l n=l 12

particular, the
@ = m, respectively;

and

maximum and mininmm speeds occur at @ = O and
thus,

1
%ax=

1--: n&(e)
n=l

1
%nin=

1- Z (-l)nnA&)
n=l

(14)

(15a)

.

The pressure coefficient ~, obtsined by means of BernoulM’s
theorem, is givenby

.

%=1-*’

The coefficients ~(e) have been developed as power series in e

in the form given by equations (6). Actually, there is no basic reason
why these coefficients shouldbe expressed in this fashion. In fact,
this power-series representation of the coefficients h(e), although
suit~le enough for wavy wslls of small amplitude (e << 1), may not be
suitable for walD of even moderate amplitude (e <1). Wreover, it
would appear that for walls of small.amplitudes the Mnearized results
givenby eqmtions (n) or (13) suffice and that the l~or expended in
obtaining the coefficients au is hardly worthwhile. Therefore, in
order to obtsin results appropriate for values of the .mpMtude e of
the order of unity, for example, SOme system of aPPro*tion other
than power-series development in e must be adopted. The ~st obtio~
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.

,

.

one is that first introduced by Stokes in connection with his work on
the theory of oscillatory waves (p. 317 of ref. 10). Stokes’ method
of approximation is to proceed according to powers of the first coeffi-
cient Al(e). That this approach is an independent one can be seen
from the recursion formula (eq. (5)) since ~ a~esring therein can be

replaced by the sum ~A2nl(~) (seeeq. (8)). HOWewr, thecoeffi-

cients ~ already ~sted in table I canbe utildzed to obtain the
expressions for ~(e), ~(e), . . . as series in ascending powers

of Al(~). They exe as follows:

lA2+&Alk+A2=-Z1 &A16+ 1 A18+...
15 x 27

%=~A13- ~Al~-&A17+ h51;:13A19 ‘“””

A4 “ - ; %4 + 153:327 A16 + ~ A18 +...
9x29

~-~A~5- 6031 A17+ 329 A19 +...
45x29 3X2=

% = - ~ %6 + 3:X3:0 A18 +...

9=
16807

A17-=A19 +...
45 x 210

A8=-~A18 +”””

%=
531441 A19 - . . .

35 x 215

(17)

.—.. . . ——- -—— —— -—.———
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From equation (8), it follows that

NACA TM 3069

823ZA3+$A15+— A17 + 26551 9 + . .
‘1+8 1 ~5x#4Al “=~ (18)

92L6

and from equation (9), it follows that

.+2+ 49 179 AI Q+...
;% * ~A14+—

4
A16 + —

384 3072
(19)

Note that with the exception of the first coefficient, where the values
are the same, the coefficients of the power series in Al shown in
equations (17) sre consistently and substantially less than the corre-
sponding coefficients of the power series in e. Moreover, for a given
value of ~, the corresponding value of Al is less. Thus, for e = 0.70
the value of Al, obtained from euuation (18). is 0.60. The values of
the other coeff~~ients
are as follows:

%?= -0.169

~ = o.021

calculated-by meti

&j = O.q’o

A6 = -0.010

of”eqpations (17) and (19)

%= -0.037

A7 = 0.006

$Ao=0.220

These values of & when introduced into equations (4) reproduce

well the boundary curve y = 0.70 cos x; other streamlines (with ~ > O)
tild.be even more accurately computed because of the presence of the
factor e-n~ in equations (3). Figure 1 shows the wavy wall for
E = 0.70 and the stresniMnes which were calculated by means of equa-

tions (3) for values corresponding to ~ =*, *, 1, g, and.2. However,

when these values of & are inserted into equations (14) and (16) in
order to obtain the fluid speed and the pressure coefficient at the
surface, the resulting points are scattered in a manner which indicates
a slow convergence of the derived series which appear in these equations.

It is clear that, for wavy ~ of even moderate amplitude,
further analytical development of the coefficients An(e) iS of Mttle
avail because on the one hand a large number of terms of the series

.

would have to be taksn, and because on the other hand the labor of the
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.

.

approximation increases inordinately with the order of the terms.
Therefore, some independent methcd must be found which avoids the
necessity of determining analytically an infinite number of coefficients.
This statement msy very well apply to flow problems in general when the
exact solution is to be approximated in some msmner by an iterative
procedure. For the present problem, such a method is described in the
following section.

Integral-Equation Approach

From equation (kb),

(n= O;l,2, ... .UJj)

The evaluation of the infinite nmiber of coefficients An(e) canbe

made to depend upon a single equation which is obtained by eliminating
&(e) from equation (4a). Thus,

X=@.-?.
l-(

where x‘ denotes x as a function of d’. The order of the two
processes summation and integration cannot i.?mnediatelybetransposed,
because the series would not be convergent. However, equation (20)
msy be regsrded as the Wnit of the expression which is obtainedby
introducing rn into the general term of the series, where r is a
quantity less than 1 snd in the Unit is equal to 1. Thus, sutmning
the series

leads to

X

@ J[ r sin(@’ + @) r sin(@’ - @)
x=-; 1COS X’ d@’

o 1- 2r cos(@’ + @) +r2 1- 2rcos(@’ - @) +#

.- .—— -—— — —.—.— -— .———- —.- —— ——...—.
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Ih the Wnit r+l,
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Hx=fl-& ‘ cot’ $(@’+ @ - cot &V - @j COS X’ d@’
o

and, after integrating by parts,

This is a nonlhear integral equation

COS X’ do’
(a)

Cos $’ - Cos $

closely related to the one derived
by Theodorsen and Garrick as the basis of their arbitrary-tirfoil theory.
In fact, the procedure of solving it is precisely the one detised by
Theodorsen and Garrick and described in detsil in reference 1. Thus, a
solution is sought, not by development in series according to some
psrsmeter, but by the following procedure of successim approximations:

I&t @k be an approximation of the velocity potential found in
any manner whatsoever. lkserting this-approximation into the right-
hsnd side of equation (21) results in an Improved approximation ~+l.

In the S= manner, further approximations ~+2j &+3~ . . . ~

obtained until the iteration ceases, that is, until a pair of succes-
sive approximations is no longer distinguishablewithin the Mmits of
the desired accuracy. Thus, equation (21) is written

Following the idea

Then to the second

of stokes, @o istsken

order of approximation>

equsl to

X’ d@o’

f

COB
-x=; sin#o —

0 Cos @o’ - Cos do

as follows:

(22)

x + Al(e)sin X.

(23)
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Now, according to reference 9 (compsre with eqs. (ha) and (12)), it
follows that x as a function of @O is given by

and

Hence, with the aid of the well-known definite integral

equation (23) yields

or

From this point it
pletely analytical

15

n@O (24)

(-l)n
[Jn-l(nAl) - Jml(nAl~sin n(x i-Al sin x)

n

is not feasible to continue this process in a com-
msnner. For a given value of Al ~ 1, however, it

is a straightforward computation to tabulate corresponding vslues of
x and @l in the range O to yt and, by means of a Fourier analysis,
to express cos x as a cosine series in @l. (See eq. (3) for means
of calculating the vslue of Al corresponMmg”to a given value of E.)
Then, from equation (22), @2 - x is obtsined as a sine series in @l.
h constrast to the malyticsl development of the coefficients as power

\

.- .— .-—--- _. ——-. ——— —. _—. ——



16 NACA TN 3069

series in e, this method for solving the integral eayation (21) can be
continued indefinitely without increase in the smount of computational
labor for each step. It is clear that, in the limit k-m, this pro-
cess @elds equation (4a) but, in practice, it is terminated when the
difference between two successive approximations is deemed negligible.

For values of AI(e) greater than unity, the appro-tion
do = x + A~(c)sin x is not valid because x then becomes a fitiple

root of this equation in the range O ~ x ~ YC. The requirement is that
@ be a continuously increasing function of x within this range at
every stage of the iteration procedure. For Al > 1, a plausible
be@hn@J would be @O = x + sti x; it may be presumed that this initial
relationship between x and do leads to a convergent process up to a
certain value of e. The last valid relationship between xmd@
would then again be taken as the beginning of the iteration procedure
for a stilJ higher range of values of e. ‘Ibisprocess of continuation
~ pres-w be carried on indefinitely.

Now, for some range of values O < Al < 1 (but possibly for values

of e > 1), equation (24) may be co~idered ~c~ate eno- to te~nate
the process of iteration. That is, approximately,

&,-,n- .

Comparison of this equation with equation

&(e) = -e W Jn-@@
n E

Note that for n = 1,

—

- Jn+l(nAl~sin n@

(ka) shows that

- Jn+l(nAl~ (25)

Al(~) = LEJo(Al) - J2(A1)J

which provides a transcendental equation for the determination of Al
for a given value of ~. With the use of the recurrence relation

2 dJn(nAl)
Jn-l(til) - Jtil(RAl) = ~

dAl
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.
it follows that

Then

However,

.

.
and hence (see eq. (8))

Again (see eq. (9))

or

w

17
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and hence,

Then to the second order of
as

approximation, equations (3) may be written

1X=#+E~&~n.l(nA~) -Jn+l(nAl) e-n’$sinn@

n=l

It is of interest to examine the

appears in equation (14) for q2. To

7

n=l

the second order of

- Jn+l(til]sin n@

Now, by defining a new vsriabl.e v by the equation

then

approximateon,

(a)

IJ= @ . ~ 2(-l)nJn(nAl)s~ n@

n=l n
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and

Hence,

w 1
or, since — =

d@ 1 + Al COS (

The graph of S as a function of @ for the case e = 0.70 (and
Al = 0.606 from eq. (25)) is shown as the solld curve in figure 2.
The circles correspond to the evaluated series, equation (27), with
n = lto 24. The values of & according to the second order of
approximation are

Al = 0.606 A2 = -0.164

4= -0.033 A5 = 0.017

A7 = 0.006 ~2~=o.212

A3 = 0.067

&= -0.010

These values agree remarl&b~ well with those obtained by the method of
stokes. Note, however, that only one step was needed in the solution
of integral equation (21) to achieve the accuracy of nine increasingly
laborious steps according to powers of the first coefficient Al(~).
The plm signs in figure 2 correspond to points computed with the Stokes
values of &. The scattering of these points, particularly in the
critical portion of the curve, is due to the slow convergence of the
series for S with only the first few terms available and presages
inaccurate determination of the derived quantities, fluid speed and
pressure coefficient at the surface of the solld boundsry. Here again

..——. —— —..—. ____— ——— -.
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the superiority of the integral-equation a~roach is demonstrated in
.

that the second-ofier approximation provides an analytic form for the
general coefficient &(e) (see eq. (25)). T*le II Usts the res~ts .
of the calculation of fluid speed and pressme coefficient at the sur-
face of the wavy wallto the second order of approximation, and figure 3
shows the corresponding graphs for an interval of one wave length.

~ conclusion, the analysis of the present paper indicates the
genersl undesirability of determining the velocity potential or the
stream function in the form of a series whose coefficients are ana-
l@icalJy developed in apower series of some psmmeter. Rather, the
flow problem should be set up in the form of an integral equation whose
solution can be obtslned by a method of successive approximations. If
this course is not possible, the parameter for the analytical develop-
ment of the coefficients should be chosen so as to insure rapid con-
vergence of the series. As the example of the present paper shows,
this parameter msy not be the most obvious one.

Langley Aeronsntical Laboratory,
National Advisory Committee for Aeronautics,

Langley Fieldj Va., Noveniber~, 1953.
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TABLE I.- COEFFICIENTS ~

—

n

—

o

1

2

3

4

5

6

7

8

9

—

m= o

1

45 x 210

u28-—
315

96

55 x 215

m= 1

3-—
8

215-—
384

1333

15 x 27

40187

45 x 21O

356983

315 x N

m= 2

1-—
8

683
1024

190849

15 x #

m=3

IL

192

-.4E_
9 x 21O

16649

45 x 210

262801

45 x 213

m=4

143-—
4608

82649

45 x 214

.

.
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TABLE II.- c&mILmmD v-oFFLulDsmED AmDl?K@aum cQml?Icm

1.046 .465

1.490 .665

L.760 .776

?.W3 .870

?.222 .880

?.534 .~~

.5523

.6300

.6162

.

,.5177

------

.3513

x

I 0.4879

.4033

.13%

-.1559

-.3449

-.56u

------

-.78.57

-.9026”

-.9121

o

.=8

.465

.665

.776

.m

-----

.795

.@5

0

‘2&

<
* cos n!

n=

0.401

.367

.238

.034

-.153

-.465

------

-1.019

-1.501

.1.550

x

0

.479

1.019

1.464

L.740

2.100

.-.--

~.53

~.97G

X

q

..670

L.494

:.m

.E52

.720

.587

,----

.461

.397

.392

%

.1.785

.1.232

-.254

.273

.482

.65&

------

.788

.&2

.~6

I
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Figure l.-

X, radhm

5treamline6 for G = 0.70.
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Figure 3.- Fluid speed and pressure coefficient at surface of wavy wall,

Y= 0.70 Cos x.
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